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ABSTRACT. Consider a procedure that chooses k-bit odd numbers indepen- 
dently and from the uniform distribution, subjects each number to t inde- 
pendent iterations of the strong probable prime test (Miller-Rabin test) with 
randomly chosen bases, and outputs the first number found that passes all t 
tests. Let Pk t denote the probability that this procedure returns a compos- 
ite number. We obtain numerical upper bounds for Pk t for various choices 
of k, t and obtain clean explicit functions that bound Pk t for certain infi- 
nite classes of k, t . For example, we show PIoo, 10 < 2 P300, 5 < 2 

P600, 1 < 2-75, and Pk, 1 < k242-vk for all k > 2. In addition, we charac- 
terize the worst-case numbers with unusually many "false witnesses" and give 
an upper bound on their distribution that is probably close to best possible. 

1. INTRODUCTION 

Let n > 1 be odd and write n - = 2su, where u is odd. If n is prime 
and n t a, then either 

(1.1) au _ 1 mod n or a 2u-1 mod n for some i < s. 

If this should hold for some pair n, a we say n is a strong probable prime base 
a. This concept was introduced by Selfridge in the mid 1970s; a variant was 
used by Miller in his ERH-conditional primality test, and Rabin used it in his 
probabilistic "primality" test. Often called now the Miller-Rabin test, we use 
the more descriptive strong probable prime test. 

Note that though (1.1) always occurs if n is prime and n t a, it may some- 
times also occur when n is composite. Let 

59(n) = {a E [1, n - 1]: au 1 mod n or a2u u-I mod n for some i < s} 

and let S(n) = k,59(n)I. It has been shown independently by Rabin [7] and 
Monier [5] that if n is odd and composite, then S(n) < (n - 1)/4. In fact, if 
n t 9 is odd and composite, then S(n) < p(n)/4, where y is Euler's function. 

Thus, Rabin [7] showed that the strong probable prime test could be made 
into a probabilistic compositeness test. That is, given an odd composite number 
n, choose a random integer a e [1, n - 1] and see if a E 5?(n) . If not, then 
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you have proved that n is composite. The expected number of iterations to 
come up with such a proof is of course at most 4/3. 

In practice, though, we may be presented with a large odd number n for 
which we are not sure if it is prime or composite. Suppose we choose a random 
number a E [1, n - 1] and see if a E 5?(n). If a E 59(n), we might choose 
another number a' E [ 1, n - 1 ] and try again. From the Rabin-Monier theorem, 
we have the following: the probability that an odd composite number n has 
a1, ... , at E 9(n) for a1, ... , at chosen uniformly and independently from 
the integers in [1 , n - 1] is at most 4-t . 

Suppose now that the number n is also chosen randomly, say from the set 
Mk of odd k-bit integers. Say we continue to choose numbers n from Mk 
until we find one that passes t random strong probable prime tests (and does 
not fail any). That is, we choose n E Mk at random, then choose a1 E [1, n - I] 
at random and see if a1 E 59(n). If so, we choose a2 E [1, n - 1] at random 
and see if a2 E 59(n). We continue until some ai f 59(n) for i < t, in 
which case we discard n and try again, or until we find some n which has 
a,, ... , at E J?(n) . 

Of course, if n is prime, then n will always have a1, ..., at E 9(n). Let 
Pk, t denote the probability that this procedure returns a composite number n . 

From the above it may be tempting to say Pk, t < 4-t for all k . But as shown 
in [2], the reasoning behind such a conclusion from the Rabin-Monier theorem 
is fallacious. Indeed, if the primes were very sparsely distributed (as they are 
in Mk for k large), then it might be more likely to observe an event with 
probability 4-t than to observe an event with a lower probability of occurrence 
(namely that a random number in Mk is prime). 

Thus any estimation of Pk ,t must take into account the distribution of the 
primes. Moreover, to get a good upper bound for Pk, t, one must show that the 
worst-case upper bound for S(n)/(n - 1) of 1/4 for n composite is rather an 
unusual occurrence. That is, for most n, S(n)/(n - 1) is considerably smaller 
than 1/4. Thus we shall be concerned with the average value of S(n)/(n - 1) 
for n odd and composite, rather than the worst (highest) value. 

From the results in [3] we have 

(1.2) Pk, 1 < 2-( 1+o(1))klnlnk/lnk for k oc. 

However, the expression o(l) was not computed explicitly in [3], so this result 
is computationally useless for finite values of k. 

In this paper we present elementary arguments for explicit upper estimates 
of Pk, t for various values of k, t . Numerical estimates are presented in Table 
1. One can see in this table that we often have Pk t considerably smaller than 
4-t . We also can obtain explicit upper bound estimates for Pk, t that are valid 
for all large values of the subscripts. In particular, we show that 

Pk, I < k242-v for k > 2, 

Pk, t <k312 4t21 -4t- for t = 2, k> 88 or 3 < t < k/9, k > 21, 

pk,t 7 k2-5t + 4k 15/42-k/2-2t + 12k2-k/4-3t for t > k/9, k > 21, 

Pk,t < 4k15/42-k/2-2t for t > k/4, k > 21. 

The proof of the last two inequalities uses a result of independent interest, 
namely that the number of Carmichael numbers up to x with just three prime 
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factors is at most x'/2(ln x)0(1) . Previously, all we knew (see [6]) was that there 
are at most O(X213) such numbers up to x. (Recall that n is a Carmichael 
number if n is composite and an a mod n for all integers a. The exis- 
tence of Carmichael numbers is what causes us to discard the simple Fermat 
congruence for (1.1).) 

It is interesting to note that the above upper bound for Pk,t in the range 
t < k/9 decays by a factor smaller than 1/4 as t increases by 1, while for 
t > k/4, it decays by the factor 1/4. This confirms the perhaps intuitive concept 
that Pk,t for large t is dominated by the possibility of choosing a worst-case 
composite number n with about n/4 "false witnesses", while for smaller values 
of t, the probability is dominated by more typical values of n with only a few 
false witnesses. 

In [4], a probability related to Pk, 1 is computed. Consider a procedure 
which chooses a random pair n, a, where n < x is an odd number and 1 < 

a < n - 1 (with the uniform distribution on all such pairs), and accepts n if 
an-I 1 mod n. Let P(x) denote the probability that this procedure accepts 
a composite number n. In ?7 we show how the numerical estimates for P(x) 
from [4] can be used to obtain estimates for Pk,t. Further, these estimates 
may be used together with the ideas from this paper to get estimates that are 
sometimes stronger than both those in Table 1 and those in [4]. For this see 
Table 2. 

It is easy to see that the Rabin-Monier theorem implies that Pk,t < 

41-tPk, /(1 - Pk, 1) for every k > 2, t > 2. Thus from (1.2) it follows that 
there is a number ko such that Pk,t < 4-t for all k > ko, t > 1. Indeed, 
if Pk, < 1/5, then Pk, t < 4-t for all t > 1. It was left as an open ques- 
tion in [2] to determine a numerical value for ko. From the work in [4] it is 
possible to show that 200 may be taken as a value for ko. Using our result 
that Pk,I < k242 - v, one easily sees that Pk, < 1/5 for each k > 95, so 
that 95 may be taken as a value for ko. From Propositions 1 and 2 below it 
follows that Pk 1 < 1/5 for each k E {55, 56,... , 94}, so that ko may be 
taken as 55. Going further, we find that Pk, I < 1/4 and Pk, 2 < 1/17 for each 
k E {51, 52, 53, 54}, so that using Pk, t < 42-tpk 2/(1 - Pk, 2) for t > 3, we 
see that ko may be taken to be 51. By tightening estimates in this paper and 
computing Pk, 1 for small values of k, it may now be possible to show that ko 
can be taken to be 2, which we conjecture to be the case. 

Thanks are due to Ronald Burthe who brought some minor errors to our 
attention. 

2. PRELIMINARIES 

Recall the definition of S(n) from ?1. Let a(n) S(n)/p(n) for n > 1, n 
odd. Thus a(n) < 1/4 for odd composite n > 9. 

Let co(n) denote the number of distinct prime factors of n, and let Q?(n) 
denote the number of prime factors of n counted with multiplicity. We shall 
always let p denote a prime number. By p,8 n , we mean p,8 n and p,8+1 t n. 

Lemma 1. If n > 1 is odd, then 

1 > 2 w(ni 
HP 
1 f- p _ - p-i 2n(n_l p-i 

a (n) - 11ln (p-1,n-1 pi-p 1 
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Proof. The second inequality follows immediately from the identity 

,: (/S - 1 ) = fl(n) - u)(n). 
pfliln 

For the first inequality, by using the well-known formula for (n) and the 
definition of a(n), it will suffice to prove 

(2.1) S(n) < 21-w(n) fl(p - 1, n - 1). 
pin 

Let v(n) be the largest number such that 2v(n) I p - 1 for each prime p n. 
Suppose the largest odd factor of n - 1 is u. In [5], Monier showed that 

(2.2) S(n) = (1 + 1 + 2wo(n) + 22w(o(n) + ... + 2(v(n)-1)w(n)) fJ(p - 1 , u). 
pin 

Now 
JJ(p - 1, u) < 2-v(n)w(n) 7J(p - 1, n - 1) 
pin pin 

and 

(2.3) 1 + 1 + 2w)(n) + 22w(o(n) + ... + 2(v(n)- 1)w(n) < 2 . 2(v (n-1) (n) 

Thus, 

S(n) < 2. 2(v(n)-1)(n)2-v(n)wo(n) f(p - 1, n - 1) = 21 w(n) J(p - 1 , n- 1), 
pin pln 

which proves (2.1) and the lemma. El 

Lemma 2. If t is a real number with t > 1, then 
00 1 2 - 6 

t]ln2 3t n=[t]+ 1 

Proof. Let m = [t], so that m > 1. Then 
oo I oo m 1 r 2 m 

Z n2 n2 n2 6 n2 
n=[t]+l n=1 n=1 n=1 

m + 1 r (2 I I m+1(7(2fn1) 1() 

say. If k is at least 2, then 

7( 2 k-I 72r2 kod f (k - 1 )- f(k) =k - 6 E 2 ) (k + 1) (6 E n2) 

6 n k 26 L2] 
n 1 n=1 

> (- + 2 2 0 0 

>-_ + Z1=n0. 
n=1 
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Thus the sequence f(l), f(2), ... is decreasing and the above estimate gives 

10 1 
E n2 <tf() t (6 -) 

n=[t]+ 1 

which proves the lemma. El 

3. A SIMPLE ESTIMATE 

Recalling the definition of a(n) from ?2, we let Cm denote the set of odd, 
composite integers n with a(n) > 2-m. Thus if m = 1, we have Cm = 0, 
and if m = 2, we have Cm = {9}. 

Let Mk denote the set of odd k-bit integers. For k > 2, we have IMkl = 
2k-2 . We shall be concerned with the proportion in Mk of those odd integers 
which are also in Cm. 

Theorem 1. If m, k are positive integers with m + 1 < 2 k- , then 

Cm flMk2 - 6) E 2m -j-(k-l)/j 
M k | j=2 

Proof. Note that from Lemma 1, nf E Cm implies Ql(n) < m. Let N(m, k, j) 
denote the set of nf E Cm n Mk with Q(n) = j. Thus, 

m 

(3.1) lCm nMkl = N(m .k 5j)j. 
j=2 

Suppose n E N(m, k, j), where 2 < j < m. Let p denote the largest 
prime factor of n . Since 2k-1 < n < 2k, we have p > 2(k-l)/j. Let d(p, n) = 
(p - 1)/(p - 1, n - 1) . From Lemma 1 and the definition of Cm, we have 

2m > 
I > 2Q(n)-ld(p, n) = 2j-ld(p, n), 

a (n) 

so that d(p, n) < 2m+-ji. 
For a given prime p > 2(k-1)/I and integer d p - 1 with d < 2m+ 1, we 

ask how many n E Mk there are with p I n, d = d(p, n), and n composite. 
This is at most the number of solutions of the system 

n-Omodp, n=_1mod d p < n < 2k, 

which, by the Chinese Remainder Theorem, is at most 

2kd 

p(p- 1) 

We conclude that 

JN(m, k, j)l < Z Z 2kd 
p>2(k- l)/ dip-I 

(3.2) d<2m+l-J 

=2 k Z Z d(-) 
d<2m+?-j p>2(k- 1)/i 

dlp-I 
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Now, for the inner sum we have 

, d E d 

p2 (k1) p -1) ud>2(k-i:/, (ud + 1)ud 
dip-i 

1 1 t2 _6 1 
<d Z u2< 3 2(k-lj)/ij - 

U>(2(k-l)lj-l )/d 

by Lemma 2. Putting this estimate in (3.2), we get 

JN(m, k, j)l < 2 k Z 2(k-l)/j- 
(3.3) d<2m+l-J 

k 
2 6 2m+-j-I 2 
3 2(k-l)/ - 

So far we have not used our hypothesis m + 1 < 2 k- . Using this and 
the inequality j + (k - 1)/j > 2 k - 1, which is valid for all j > 0, we have 
m+ 1 < j+ (k - 1)/j. Thus, 

2m+1-j i 1< 2m+ i 
2 2 2m-j-(k-l)l; 

2(k-l)/j- 1 - 2(k-l)/j 

Combining this estimate with (3.3) and (3.1), we have 

k+ 2~ m 
lCm n Mkl < 2k+1 3 Z 2m-j-(k-) 

j=2 

Thus, the theorem follows from the fact that IMk - 2k-2 . 

4. FIRST NUMERICAL RESULTS 

In this section we use Theorem 1 and an explicit estimate for the distribution 
of prime numbers to obtain some quite good numerical estimates for Pk I for 
various values of k and t. 

Let 7t(x) denote the number of primes p < x and let E' denote a sum 
over composite integers. 

Recall the function S(n) from ?1 and let ax(n) := S(n)/(n - 1). Thus, 
(x(n) < a((n) for all odd n > 1. Using the law of conditional probability, we 
have for k > 2 

Pk,t = (Y ( (n)t) aE o(n)t ? YE < O(p)t YE (E(n) 
(4.1) nEMk nEMk PEMA nEMA 

= (7t(2k) - 7t(2k-1))-1 Z (n)'. 
nEMP 

Thus, to get an upper estimate for Pk t, it will suffice to find an upper estimate 
for the final sum in (4.1) and a lower estimate for 7t(2k) - 7(2k-1) . 
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Proposition 1. Let c = 8(7r2 - 6)/3. For any integers k, M, t with 3 < M < 

2 kX - I and t > 1, we have 
M M 

J a-(n)t < 2k-2-Mt + c . 2k-2+t E E 2m(l-t)-j-(k-l)lj 
neMk j=2 m=j 

m$/2 

Proof. First note that the hypothesis implies k > 5, so we have Ci n Mk = 
C2 n Mk = 0. Thus, 

00 
00 

Z a(n)t= Z Z a (n)t < Z Z a(n)t 
neMk m=3 nfeMknCm\Cm-l m=3 nfeMknCm\Cm-l 

00 

(4.2) < E 2-(mlI)tlMk n Cm\Cm-l1 
m=3 

M 
< 2-MtjMk\CMj + , 2-(m l)tlMk n Cml. 

m=3 

From Theorem 1 and the above estimate we have 
M m 

Z a-(n)t < 2k-2-Mt + C. 2k-2 , 2-(m-I )t+m-j-(k- 1)/j 

nEMk m=3 j=2 

M M 
- 2k-2-Mt + c . 2k-2+t E E 2m(1-t)-j-(k-1)/j 

j=2 m=j 
m$/2 

which proves the proposition. El 

Proposition 2. For k an integer at least 21, we have 

(2k) - 7(2k-1) > (0.71867) 
k 

Proof. Let 0 (x) = Ep<x lnp . We have 

(4.3) 7t(x) - 7(2) > 1 lnp= m (X) - x ( 
2 Ix inZs 

x/2<p<x 

From [8] we have 

0(x) < 1.0011 x for x > 0, 
0(x) > 0.9987x for x > 1155901. 

Thus, for x> 1155901,we have 

0(x) - 0 (x) > 0.9987x - (1.001 )x = 0.49815x. 

Thus, from (4.3) we have 

x ~~x 7r(X) - 7r ( > 0.498151 

for x > 1155901 . In particular, if k > 21, then 

7(2k) - 7.(2k-1) > 0.49815 2 > 0.71867 -k 
kwn2 k 

which proves the proposition. El 
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TABLE 1. Lower bounds for - lgpk,t 

k\t 1 2 3 4 5 6 7 8 9 10 

100 5 14 20 25 29 33 36 39 41 44 
150 8 20 28 34 39 43 47 51 54 57 
200 11 25 34 41 47 52 57 61 65 69 
250 14 29 39 47 54 60 65 70 75 79 
300 16 33 44 53 60 67 73 78 83 88 
350 19 37 48 58 66 73 80 86 91 97 
400 21 40 53 63 72 80 87 93 99 105 
450 23 43 57 68 77 85 93 100 106 112 
500 25 46 61 72 82 91 99 106 113 119 
550 27 49 64 76 87 96 104 112 119 126 
600 29 52 68 80 91 101 110 118 125 132 

The numbers in Table 1 were computed from (4.1), Proposition 1, and Propo- 
sition 2, using the optimal value of the free parameter M. If j is the entry 
corresponding to k and t in Table 1, then we are asserting that Pk t < 2. 

5. GENERAL INEQUALITIES FOR Pk, t 

It is the purpose of this section to obtain clean upper-bound inequalities for 

Pk, t that are valid for all k or all large k . We begin with the following. 

Theorem 2. For k > 2 we have Pk, 1 < k242-Ok . 

Proof. From (4.1) we have for k > 2 that 

(5.1) Pk,l < ((2k) - (2k-1))-l Z (n). 
nCeMk 

Using Em 2m(1-t) = M + 1 - j for t = 1 , we obtain from Proposition 1 that 

M 

(5.2) ' (n) < 2k2M + c . 2k1 (M + 1 - j)2j-(k )/I 

neMk j=2 

for any integer M with 3 < M < 2 /k- I. Note that for any j we have 

j + J.> 2v 1. 

Assume k > 5 and let M = [2Vk - 1 - 1]. We get from the above that 

M 

Z a(n) < 2k 2M + c . 2k12 E(M + 1 - j) 
nE Mk j=2 

(5.3) = 2k-2-M + cM(M - 1)2k-2 k-I 

< 2k2 k- 1 c(2 k-i- 1) (2 +k -l2)2k-2 k 

< ck2k2\k-i 
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Using VW < k- + l/(2k-), we have for k > 2 that 

(5.4) 2- < 2- +1V 

Suppose now that k > 42. Then from (5.3) and (5.4) we have 

E c(n) < ck2l1/f42k-2v 
nEMk 

Using this and Proposition 2 in (5.1), we have for k > 42 that 

Pk, I < - 
0.71867 

which proves the theorem for k > 42. But k242-Vk > 1 for k < 63, so the 
theorem is trivially true for k < 63. o 

Remark. With a little more careful estimation of the sum on the right side of 

(5.2) we can show Pk, 1 = O(k3!244-/k) with an explicit 0-constant. 

Theorem 3. For k, t integers with k > 21, 3 < t < k/9 or k > 88, t = 2, we 
have 

Pk, t <k32 k 42-X 

Proof. Assume k > 9, t > 2. Using EM 2m(1-t) < 2j(1-t)/(l - 21-t), we M=j 

obtain from Proposition 1 that 

(5)k2-Mt 
- 2k-2+t M 

(k-l)/j (5) Ea(x(n)t < 2k + C-1 - 2-jt- 
nEMk j=2 

for any integer M with 3 < M < 2 k- 1 - 1 . We shall use the inequality 

jt + kl > 2 t(k-l) for all j > 0. 

Further, we shall choose M= [2(k - 1)/ti in (5.5). Thus, to have M > 3, 
we must restrict t to t < k - 1. Further, for k > 9 we have 

M= 2 / < p2V(k _l)/2l < 2Vk 1-1 

so that (5.5) is applicable. Thus, from (5.5) we get 

Mt 2k-2+t El a-(n)t < 2k-2-Mt + C - 21t (M - 1)22 t(2k1) 

nEMk 

< 2 k - 2 - 2 V / ~(k +2C _ 2 1t 

Now for k > 9 and t > 2 we have 

2c t _21t > 2c 9 22 _ > 350 
t 1t - 21i->' 350 
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Thus, 

(5.6) Z (n)t < 2k-2-2Vt(k1)3512c k 22 
nEMk 350 ti-21-t 

Note that 2 -2 <) < 2-2V 2t/(k). For 3 < t < k/9, we have 

2V/'t/(k- 1) 4 -\2 < 42'\32 < 1.7. 

For t = 2 and k > 88, we have 

2 -/21)= 21+?2/(k-1) < 2.222. 

Putting these estimates in (5.6), we get 

aE (n) t <2k-2-2t 351 -4 444c -2t 
350 t 

nEMk 

for 3 < t < (k- 1)/2, k > 9 and for t = 2, k > 88. 
Now using (4.1) and Proposition 2, we get 

351 1.111 C3/23-4v' 
Pk,t < 3500.71867 3 t2 

for 3 < t < k/9, k > 21 and for t = 2, k > 88. Thus, for these values of 
k, t we have 

Pk, t < k312 2- 

which proves the theorem. f1 

Remark. It should be clear from the proof that we have a somewhat stronger, 
but less clean, inequality that is valid in a wider range for k, t. 

We can also use the above methods to estimate Pk, t for very large values of 
t. However, when we do many probable prime tests it is more important to 
have improved estimates on the distribution of the worst-case numbers, namely 
the members of C3. We do this in the next section. 

6. THE WORST-CASE NUMBERS 

In this section we classify the members of C3, get an improved estimate for 
C3 n Mk , and use this to get an estimate for Pk, t when t is large. 

Theorem 4. The following numbers comprise C3: 

(i) (m + 1)(2m + 1), where m + 1, 2m + ? are odd primes, 
(ii) (m + 1)(3m + 1), where m + 1, 3m + 1 are primes that are 3 mod 4, 

(iii) P1P2P3, where P1, P2, P3 are primes, PIP2P3 is a Carmichael number, 
and there is some integer s with 2s I pI - 1 for i = 1, 2, 3, 

(iv) 9, 25, 49. 
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Proof. Suppose m+ 1, 2m+ 1 are prime and 2vH m . If n =(m+ 1)(2m+ 1), 

then (2.2) implies S(n) = (1 + 4v31)4-vm2, so that 

a(n) = S(n) 
= 1 + (4v 

- 1)/3 > 1 
a(n)=n) 2.-4v >6 

Similarly, if n is in class (ii), then v = 1 and 

(6.1) a(n) = 1 +(4v - 1)/3 _ 1 
3.-4v 6' 

If n is in class (iii), then 

a _n =1?+(8s -1)/7 1 
8s 7' 

Finally, a(9) = 1/3, a(25) = 1/5, a(49) = 1/7. 
It remains to show that C3 has no other elements. From (2.2) and (2.3) we 

have 
S(n) < 21+(v(n)-1)wj(n) J1(p - 1 , U). 

pln 

Say the distinct primes in n are P1, P2, .. , (n) and p, - 1 25 u for each 
i, where ui is odd. Then 

p(n) Ho(n)2su 
S(n) 21+(v(n)-1)wo(n) Hw(n) (pi- 1 , U) 

(6.2) _ 

= 
(n 

2w(n)-12=(s-v(n)) rI (p, U) 
1=1 

Thus, a necessary condition for n E C3 is that the integer on the right of (6.2) 
is less than 8. 

We thus immediately see that co(n) < 3. Suppose co(n) = 3. Then, if 
n E C3, we see from (6.2) that si = v(n) for i = 1, 2, 3 and ui = (pi - 1, u) 
for i = 1, 2, 3. Thus n is in class (iii). 

Suppose w(n) = 2. Suppose SI = S2 = v(n). Since n, having only two 
distinct prime factors, cannot be a Carmichael number, the final product on the 
right of (6.2) must be at least 3. Thus, if n E C3, this product is 3 and n is 
in class (ii) (and from (6.1) we see that v(n) = 1). If sI :A s2 and n E C3, we 
must have IsI - s21 = l, say si = v(n), S2 =SI + . We also must have the 

final product in (6.2) equal to 1, so n is in class (i). 
Finally, if n = pa with p prime, then a(n) = 1/pa-i, so that n E C3 

implies n is in class (iv). f1 

Theorem 5. Let N(x) denote the number of Carmichael numbers up to x with 
exactly three prime factors. Then for all x > 1 we have 

N(x) < I x 1/2(ln x) 11/4 

Proof. A Carmichael number n with three prime factors can be written as 
pqr with 2 < p < q < r primes and [p - l, q - 1, r- 1] I pqr- l. Let 
g = (p - 1, q - 1, r - 1), and let a, b, c be such that 

p- I =ga, q- l =gb, r- l =gc. 
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Thus, a < b < c, (a, b, c) = 1, and 

(6.3) a I b+c+gbc, b I a+c+gac, c a+b+ gab. 

From (6.3) it easily follows that a, b, c are pairwise coprime. For example, 
the first relation in (6.3) implies that (a, b) I c, so that (a, b, c) = 1 implies 
(a, b) = 1. 

Thus, the relations in (6.3) imply that if a, b, c are given, then g is deter- 
mined mod abc. 

We now count the number N of quadruples g, a, b, c which satisfy the 
above conditions and g3abc < x. Note that N(x) < N. We write N = 
N1 + N2 + N3, where in N1 we count those quadruples with g > abc, in N2 
we count those quadruples with G < g < abc, and in N3 we count those 
quadruples with g < G and g < abc. Here G is a parameter we shall choose 
later. 

If a, b, c are given, then the number of g with g3abc < x, g in a par- 
ticular residue class mod abc, and g > abc is at most [(x/abc)1/3labc] < 
x1/3/(abc)413 . Thus, 

(6.4) N, < E (abc)4!3 < G) 

where 4 denotes the Riemann zeta function. 
To estimate N2 note that for each coprime triple a, b, c there is at most 

one g that satisfies (6.3) and g < abc. Further, if g > G and g3abc < x, 
then abc < x/G3. Thus, N2 is at most the number of triples a, b, c with 
a < b < c and abc < x/G3 . Thus, 

N2 <Z ZE 
1 <a<x'/3/G a<b<(x/aG3)112 b<c<x/abG3 

(6.5) <ZZabG3 <ZaG3 ln((aG3)) 
a b a 

<2G3 (1 G +ln( G))ln6(j) G3 

for G > e. 
Now we estimate N3 . From (6.3), for g, a, b, c given, there is an integer 

h with 

(6.6) c = a+b+ gab = (ga?+ )b+a 
h h 

so that 

(6.7) h (ga +l)b+a and h <ga. 

Note that 

a + c + gac = (ga + 1)c +a= (ga+ 1)2b+(ga+ l)a 
h 

so that (6.3) implies b I (ga + l)a + ha. Since (b, a) = 1 , we have 

(6.8) bIga+?+h. 
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Also note that 

b+c+gbc= (gb+ l)c+b= (gb+ 1)(ga+ l)b+a +b h 

so that (6.3) implies a I (gb + I)b + hb, and since (a, b) = 1, we have 

(6.9) a I gb+ I +h. 

Let j be such that 

(6.10) b = ga + I + h 

so that a < b and h < ga imply j < 2g. We have 

b+ I +h =ga+ 1h +h+ +h 

so that (6.9) implies that a g + gh + j + jh; that is, 

(6.11) (g+ j)(? +h)-O moda. 

Suppose we are given g, a, j . Let d = (a, j(g + j)) . Note that (6.10) and 
(6.11) imply 

? +h--ga modj, ?+h-O mod a 
J~~~~ ~(a, g?+j)' 

Thus, 

(6.12) 1+h_-ga mod j- 

Indeed, 

~. a ja ja ja 
K (a, g + j) (a, g + j)(j, a/(a, g + j)) (j(a, g + j), a) d 

Now the number of positive integers h < ga which satisfy (6.12) is at most 

(6.13) F</d 1 J l 2 

since j < 2g implies gd/j > d/2 > 1/2. Further, if g, a, j, h are given, 
then b, c are also specified, via (6.6) and (6.10). Thus, by (6.13), 

N3 <Z z z: 2g(a, j(j+g)) 
g<G j<2g a<xll3/g 

(6.14) < 
z 2gd l <2x1/3Z 

g<G j<2g dlj(j+g) a<x"13/g g<G j<2g dlj(j+g) 
dia 

Next note that 

Z 1 = T(j(j?+ g)) < T(j)T( + g), 
dlj(j+g) 
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where T(m) denotes the number of divisors of m. Thus, from (6.14), 

N3< 2x1/3 z T(j)T(j?g) 

g<G j<2g 

(6.15) = 2x1/3 T(i) (j + g) 
j<2G j/2<g<G 

< 2xI/ 3 ( U))(E m). 

j<2G m<3G 

We have from Lemma 2.6 in [4] and its proof, 

T r(m) < 3G(1 +ln(3G)), Z < K (2'+1 n(2G) ? 22?n2). 
m<3G j<2G 

Thus, from (6.15) we have 

N3 < 3x1/3G(1 + ln(3G))(2 + ln(2G))2. 

We now let G = x1/6/(lnx)1/4. Assume x > 1010. Then 

1 + ln(3G) < ln x, 2 + ln(2G) < I lnx, 

so that N3 < -3-x1/2(In x)1 1/4 

We have from (6.5) that N2 < Ix1/2(Inx)11/4. Thus, with (6.4), we have 

(6.16) N(x) < N = N? + N2?+ N3 < Ix1/2(Inx) 1/4 

for x > 1010. (We use 4(4/3) < I+f t-413 dt = 4 and 43/6 < X116(inx) 1/4 

for x > 101 0.) Finally, we note that from the table of Carmichael numbers as- 
sociated with [6], the inequality of the theorem holds for all x in the remaining 
range I<x<1010. fl 

Corollary. For k > 2 we have I C3 n Mkl < l k 1ll4 2k!2. 

Proof. We consider the four classes of members of C3 listed in Theorem 4. If 
n = (m + 1)(2m + 1) < x is in class (i), then 2m2 < x. Using that m is even, 
wehaveatmost x/8 such n <x. If n = (m+1)(3m+1) <x isinclass 
(ii), then we similarly get at most xl 12 such n < x . 

Now consider JC3 n Mkl for k > 7. No member of class (iv) is in Mk . 

Using the above estimates with x = 2k and using Theorem 5, we have 

C3 n Mkl < 12k/2 + 1 2k!2 + (ln 2) 1!4kll!42k!2 

< (0.354 + 0.289 + 0.0913k1 1/4)2k/2 < 1 k 1/42k/2 

which proves the corollary for k > 7. For the remaining values of k it suffices 
to note that the upper bound in the corollary exceeds 2k-2 = lMkl . 1 

We remark that the prime k-tuples conjecture in analytic number theory 
implies that the number of members of C3 n Mk which are in either of the 
first two classes of Theorem 4 exceeds c'k-22kl2 for some positive constant 
c'. Thus, but for a factor that is k00) , the above corollary is probably best 
possible. 

The following result complements Theorems 2 and 3. 
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Theorem 6. For integers k, t with k > 21 and t > k/9 we have 

Pk,t < 7k2 -5t + 1 k15/42-k/2-2t + 12k2-k/4-3t 

Proof. By taking M = 5 in (4.2), we have 

Z a(n)t < 2 5tMk| + 2 2t lMkn C3 I + 2 3t lMkn C41 + 2 4t' Mk n C51. 
nEMk 

We use Theorem 1 and the corollary to Theorem 5 to get 

El a-(n)t < 2k-2-5t + 1 k1 1/4 2k/2-2t 

nEMk 

+ c2k-2-3t(22-(k-l)/2 + 21-(k-1)/3 + 2-(k-1)/4) 

+ c2k-2-4t(23-(k-l)/2 + 22-(k-1)/3 + 21-(k-1)/4 + 2-(k-1)/5) 

where c - 8(7r2 - 6)/3. Using k > 21 , we then get from this estimate that 

a (n)t < 2k-2-5t + I?k11/42k/2-t + 1. 7c2k-2-3t-(k-1)/4 10 
nEMk 

? 2.7c2k-2-4t-(k-1)/5 

Now using (4.1) and Proposition 2, we have 

(6.17) Pk,t < (0.35)k2 -5t + (0.1392)k15/42-k/2-2t 

+ (7.26)k2k/43t + ( 112)k2k/54t 

For t > k/9 and k > 21 the last term above is less than (4.61)k2-k/4-3t, 
which, when put in (6.17), gives the theorem. f1 

Corollary. For integers t, k with t > k/4 and k > 21 we have Pk,t < 
1l5/42-k/2-2t 
7 

Proof. This result follows immediately from (6.17). [1 

7. IMPROVED NUMERICAL RESULTS 

In this section we show how the numerical estimates in [4] can be used to- 
gether with the methods in this paper to get numerical upper estimates for Pk, t 
that are sometimes better than our results above in ?4. 

In [4], the ratio 

P (x) =, (F (n) - 2)/ (F (n) - 2) 
n<x l<n<x 

n odd n odd 

is estimated from above, where the prime continues to indicate the sum is 
restricted to composite numbers. Here, F(n) is the number of residues a mod 
n with an-1 1 mod n. 
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It is further shown in [4] that 

x2 
Z (F(n) -2) > 2(2 1 ) 

i<n<x 22lx 
n odd 

for all x > 37. The argument in [4] proceeds to majorize P(x) by instead 
majorizing the function 

P(x) 2(2E+lnx) F(n). 
x2 

n<x 
n odd 

Thus, the estimates in [4] actually give upper bounds for the function P(x). 
We now show a connection between P(2k) and the quantities estimated in 
Proposition 1. 

Proposition 3. For k > 2 we have 

2k-1 k) k l 
a(n)< 2k lP(2 + k 

nEMk 
2 

Moreover, if k, M, t are integers with 3 < M < 20k- 1- and t > 2, we 
have 

Z -(n)t < 2-M(t-1) a d(n)+? - c2-t E 2-jt-(k-1)/j 
nEMk nEMk j=2 

where c = 8(7r2- 6)/3. 

Proof. The second assertion follows immediately from the proofs of Proposi- 
tion 1 and (5.5), the only difference being the estimation of 

00 

E E a-(n)t= a' ((n) t 

m=M+l nEMknCm\Cm_I nEMk\CM 

In Proposition 1 we majorized this expression by 2-MtlMk\CMl < 2k-2-Mt. 

Now we argue that this expression is at most 

E a(n)t- 1 a(n) < 2-M(t- 1) ,' o.(n) < 2-M(t- 1) 5' (n 
nEMk\CM nEMk\CM nEMA 

It remains to show the first inequality in the proposition. We use the fact 
S(n) < F(n)/2 if n is odd and divisible by at least two distinct primes. This 
follows easily from the first inequality in Lemma 1 and the formula (see [1, 5]) 

F(n) = J7(p - 1, n - 1). 
pln 

Note that if n = pa, where p is an odd prime, then S(n) = F(n) = p - 1. 
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Thus, 

Z' a(= Z nS(n) < 21-k Z S(n) 
nEMk nEMk nEMk 

< 2-k Z F(n) + 21-k Z S(pa) 
nEMk PaE Mk 

co(n)>1 a>1 

< 2-k Z F(n) + 2-k E S(pa) 

n<2k pa<2k 
n odd p>2,a>1 

2 2k 
= k2 2(2 In2k)P(2) + 2 Z ( _1) 

pa<2k 
p>2, a>I 

2k-1 2 < P(2k)?2kk Z (p- 1) 
2<p<2k/2 

Using 

(p-[)<2 
E 2k/2 + 1 2k/2 _ I 

k-2 Z ~~~~ E2 2 
< 

2<p<2k/2 m<(2k/2-1)/2 

we thus have 

Z ej>(n) < 2k P(2k) + - 

nEMk 2?kln2 

This completes the proof of Proposition 3. fl 

It remains now to use (4.1) and Propositions 2 and 3, together with the 
estimates in [4], to get numerical estimates for Pk t. There is a difficulty, 
however, with using the table from [4] since it gives estimates for P(x) for 
x equal to various powers of 10, while in Proposition 3, we need to know an 
estimate when x is a power of 2. Suppose 2k < x. From the definition of P 
we have 

P(2 2+I2nx 
* 

22kP(x) 
< 22kP(x). 

Thus, if we have an estimate for P(x), we can use this to get an estimate for 
P(2k) . However, this interpolation formula is too crude. So instead of using the 
table from [4] and interpolating, we recompute P(x) using the formulas from 
[4] for x being various powers of 2 and use these estimates in Proposition 3. 
Table 2 gives numerical upper bounds for various Pk t using these ideas. If j 
is the entry in Table 2 corresponding to k, t, then Pk,t < 2-i. An entry is 
italicized if it is an improvement on the corresponding entry in Table 1. 



194 IVAN DAMGARD, PETER LANDROCK, AND CARL POMERANCE 

TABLE 2. Lower bounds for - lgp k, t: combined method 

k\t 1 2 3 4 5 6 7 8 9 10 

100 5 14 20 25 29 33 36 39 41 44 
150 8 20 28 34 39 43 47 51 54 57 
200 11 25 34 41 47 52 57 61 65 69 
250 14 29 39 47 54 60 65 70 75 79 
300 19 33 44 53 60 67 73 78 83 88 
350 28 38 48 58 66 73 80 86 91 97 
400 37 46 55 63 72 80 87 93 99 105 
450 46 54 62 70 78 85 93 100 106 112 
500 56 63 70 78 85 92 99 106 113 119 
550 65 72 79 86 93 100 107 113 119 126 
600 75 82 88 95 102 108 115 121 127 133 
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